TEMA 2 – ESTRUCTURAS

INTRODUCCIÓN.

Todos los cuerpos poseen algún tipo de estructura. Las estructuras se encuentran en la naturaleza y comprenden desde las conchas de los moluscos hasta los edificios, desde el esqueleto de los animales ..., pero el ser humano ha sabido construir las suyas para resolver sus necesidades.

Pero... ¿Qué tienen todas en común tantas cosas distintas para ser todas estructuras?

- 1. Están compuestos por elementos simples unidos entre sí
- 2. Resisten las fuerzas a las que está sometido sin destruirse
- 3. Todas conservan su forma básica

Por eso, podemos dar una definición de estructura:

Una estructura es un conjunto de **elementos unidos entre sí** capaces de **soportar los fuerzas** que actúan sobre ella, con el objeto de **conservar su forma**.

Las fuerzas que actúan sobre una estructura se denominan **cargas** y pueden ser de dos tipos: *Fijas* como el peso propio de un puente, que siempre actúa sobre los cuerpos; o *variables*, como el viento que no siempre actúa sobre los objetos.

Las estructuras pueden ser *naturales* (creadas por la naturaleza como el esqueleto, las cuevas, los barrancos, etc.) o *artificiales* (creadas por el hombre como las viviendas, los vehículos, las carreteras, los aviones, etc.).

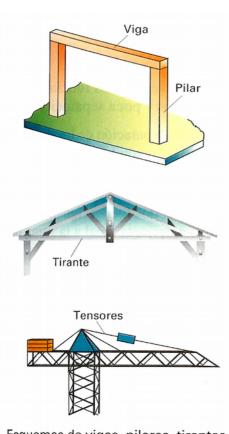
FUNCIONES DE LAS ESTRUCTURAS.

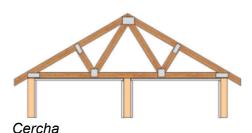
¿Qué condiciones debe cumplir una estructura para que funcione bien?

- **1. Soportar cargas**. Es la principal función de toda estructura ya que las fuerzas o cargas siempre están presentes en la naturaleza: la gravedad, el viento, el oleaje, etc.
- 2. Mantener la forma. Es fundamental que las estructuras no se deformen, ya que si esto ocurriese, podrían romperse. Es lo que ocurre cuando los esfuerzos son muy grandes. Por ejemplo, en un accidente de coche, la carrocería siempre se deforma o araña dependiendo de la gravedad del impacto.
- 3. Proteger partes delicadas. Una estructura debe proteger las partes delicadas de los objetos que los poseen. Por ejemplo, el esqueleto protege nuestros órganos internos, la carcasa de un ordenador protege el microprocesador, las tarjetas, etc. Pero hay estructuras que no tienen partes internas que proteger, como los puentes o las grúas.
- **4. Ligeras**: Las estructuras deben ser lo más ligeras posibles. Si la estructura fuese muy pesada, podría venirse abajo y, además se derrocharían muchos materiales.
- 5. Estable: La estructura no puede volcar o caerse aunque reciba diferentes cargas.

ELEMENTOS DE UNA ESTRUCTURA.

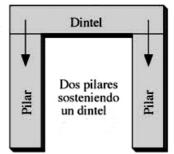
Las estructuras pueden ser masivas como una cueva o una presa. Pero lo normal es que estén formadas por **partes**, de manera que se forman por la unión de diferentes clases de **elementos estructurales** debidamente colocadas. De esta forma se construyen puentes, edificios, naves industriales, etc.


Los principales elementos estructurales, llamados <u>elementos</u> <u>estructurales simples</u> o <u>elementos resistentes</u>, son:


Forjado

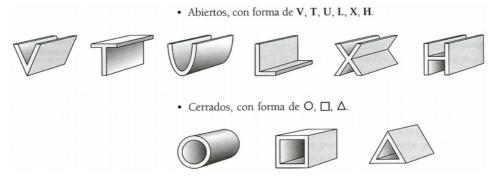
- 2. Pilares: Son los elementos verticales de una estructura y se encargan de soportar el peso de toda la estructura. Por ejemplo las patas de la mesa, las de la silla (que como ves no son exactamente verticale), los travesaños verticales del marco de la ventana, etc. En un edificio, los pilares soportan el forjado que tienen justo encima, además del peso del resto del edificio. Si los pilares son redondos, se llaman columnas.
- 3. Vigas: Son elementos estructurales que normalmente se colocan en posición horizontal, que se apoyan sobre los pilares, destinados a soportar cargas. En un edificio forman parte del forjado. Ejemplos de vigas son, los rieles de las cortinas, los travesaños horizontales de debajo del tablero en el pupitre o en la silla, el marco de la ventana o de la puerta, etc.
- 4. Tirantes: Con objeto de dar rigidez a las estructuras se dispone de unos elementos simples que se colocan entre las vigas y los pilares. Por ejemplo las tijeras de los andamios (oblicuas), esa barra horizontal donde apoyas los pies en el pupitre, etc
- 5. Tensores: Su misión es parecida a la de los tirantes pero éstos son normalmente cables, como los cables que sostienen la barra de gimnasia, o sujetan una tienda de camping, etc.
- 6. Cerchas: que son un caso especial de vigas formada por un conjunto de barras formando una estructura triangular. Se usan normalmente en los techos de las naves industriales. Es decir, es una estructura triangular construida con barras de acero o madera que forman tejados.

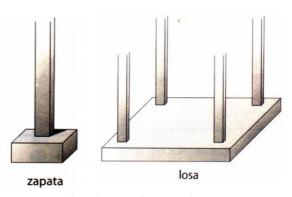
Esquemas de vigas, pilares, tirantes y tensores



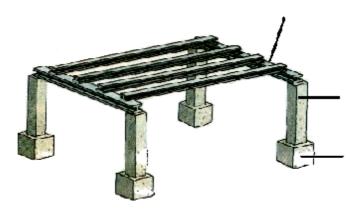
7. Arco: es el elemento estructural, de forma curvada, que salva el espacio entre dos pilares o muros. Es muy útil para salvar espacios relativamente grandes. Es muy común en puentes, acueductos y pórticos.

Puente romano con arco


8. Dintel: Viga maciza que se apoya horizontalmente sobre dos soportes verticales y que cierra huecos tales como ventanas y puertas.


Puerta con dintel

9. Los perfiles: son todos aquellas barras de acero que tienen una forma especial. se emplean para conseguir estructuras más ligeras que soportan grandes pesos con poca cantidad de material. El nombre del perfil viene dado por la forma de la superficie lateral: I, U, T, L... Estos aceros se usan en las vigas, pilares y tirantes.


 Cimientos: es el elemento encargado de soportar y repartir por el suelo todo el peso de la estructura.

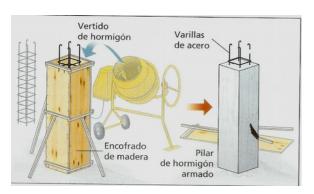
Gracias a la cimentación, el peso total de la estructura no va directamente al suelo (sin cimientos un edificio podría hundirse como una estructura de palillos levantada sobre mantequilla) y los pilares de la estructura no se clavan en el terreno y se hunden en él. Los cimientos funcionan como los zapatos del edificio. En definitiva, con los cimientos

evitamos que el edificio se hunda en el terreno y al mismo tiempo logramos que permanezca estable.

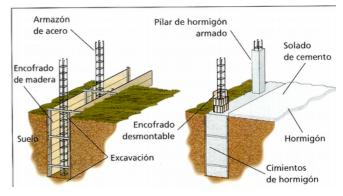
Ejercicio: Identifica los Elementos de la siguiente estructura

MATERIALES DE CONSTRUCCIÓN.

Normalmente, para construir edificios, puentes, túneles, etc., suelen usarse varios elementos: ladrillos, bloques, cemento, agua, arena, grava, aceros, hormigón, etc.


El hormigón es el material más usado en la construcción. El **hormigón** es una mezcla de cemento, arena, grava y agua. Si al hormigón se le añade un *entramado de acero* para hacerlo mas resistente, se lo denomina **hormigón armado**.

Una vez hecha la mezcla, el hormigón se mete en un **molde llamado encofrado** y se debe esperar un tiempo de unas 10 a 20 horas para que se seque y endurezca. A este proceso se le llama **fraguado**. Una vez pasado ese tiempo, se retira el encofrado y tenemos lista nuestro



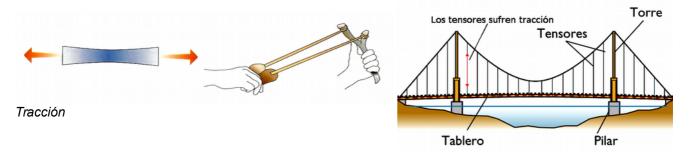
Fabricando hormigón

elemento de la estructura, que puede ser un pilar (ver siguiente figura), forjado, viga, etc.

Fabricación de un pilar de hormigón armado. Observa el encofrado (molde) de madera

Fabricación de cimientos de hormigón armado. Observa cómo se levantan pilares sobre los cimientos

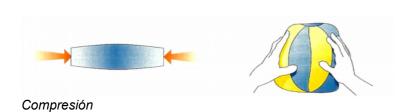
Vertido de hormigón en el forjado de un edificio


Tienes que tener en cuenta que durante el fraguado del cemento (el secado) se desprende mucho calor y se forman gases en el interior de los elementos construidos. Si el cemento en este proceso no se refresca (normalmente con agua), se forman grietas en la estructura por las que salen los gases y el calor. Por eso los albañiles remojan el cemento, el hormigón y el hormigón armado mientras fraguan.

LAS FUERZAS QUE SOPORTA UNA ESTRUCTURA.

Una estructura tiene que soportar su propio peso, el de las cargas que sujetan y también fuerzas exteriores como el viento, las olas, etc.

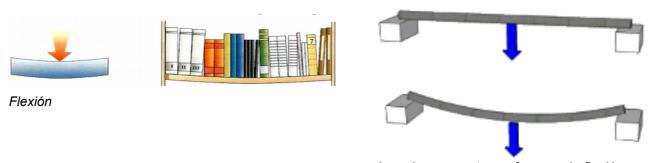
Por eso, cada elemento de una estructura tiene que resistir diversos tipos de fuerzas sin deformarse ni romperse. Los tipos de fuerza más importantes que soportan son:


1. Tracción: Si sobre los extremos de un cuerpo actúan dos fuerzas opuestas que tienden a estirarlo, el cuerpo sufre tracción.

Es el tipo de esfuerzo que soportan los tirantes y los tensores.

2. Compresión: Si sobre los extremos de un cuerpo actúan dos fuerzas opuestas que

tienden a comprimirlo, el cuerpo sufre compresión.



Los pilares soportan el esfuerzo de compresión

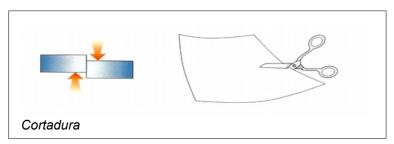
Es el tipo de esfuerzo que soportan los pilares y los cimientos.

3. Flexión: Si sobre un cuerpo actúan fuerzas que tienden a doblarlo, el cuerpo sufre flexión.

Las vigas soportan esfuerzos de flexión

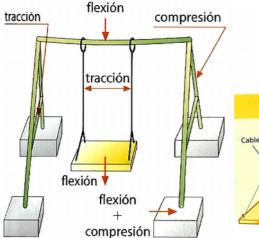
Es el tipo de esfuerzo que soportan las vigas y las cerchas.

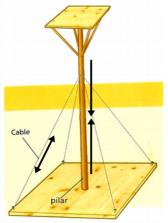
4. Torsión: Si sobre un cuerpo actúan fuerzas que tienden a girarlo o retorcerlo, el cuerpo sufre torsión.


Torsión

Es el tipo de esfuerzo que soporta una <u>llave girando en una cerradura.</u>

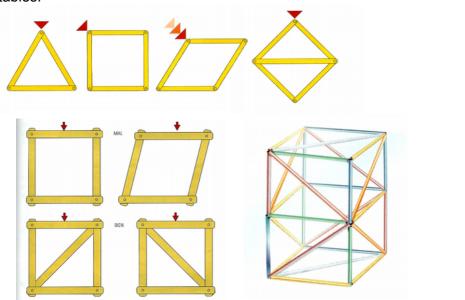
Tanto el tornillo como la punta del destornillador están sufriendo torsión


5. Cortadura o cizalladura: Si sobre un cuerpo actúan fuerzas que tienden a cortarlo o desgarrarlo, el cuerpo sufre cortadura.


Es el tipo de esfuerzo que sufre la zona del trampolín de piscina unida a la torre o la zona de unión entre una viga y un pilar.

La zona en que se unen la viga y el pilar sufre cizalladura, porque tiende a cortarse

En el columpio se han señalado los esfuerzos que soporta cada uno de sus elementos.

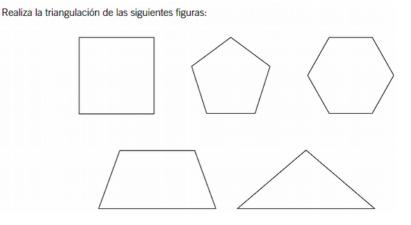

Ejemplo de pilar que sufre el esfuerzos de compresión y tensor que sufre el esfuerzo de tracción (cable)

TRIANGULACIÓN. ESTRUCTURAS TRIANGULADAS

Si se analiza cualquier estructura formada por la unión de perfiles simples, como las de las grúas de la construcción, algunos puentes, las torres de alta tensión, etc.; vemos que la rigidez de estas estructuras no se debe a lo compacto de su construcción, sino al entramado triangular de su forma. Es decir, su rigidez se basa en la **triangulación**. Triangular una estructura consiste en añadirle barras y perfiles hasta que toda ella esté formada por un conjunto de triángulos que le permitirá tener una gran rigidez y resistencia a deformarse.

Si te fijas en los ejemplos, la estructura cuadrada puede deformarse fácilmente, al igual que la pentagonal. Pero la triangular es muy estable e indeformable. Por eso, las otras formas geométricas se triangulan para darles rigidez.

Es decir, la triangulación hace que las estructuras no se deformen y que sean muy estables.



Triangulación de un cuadrado

Puente con cerchas triangulado

Actividades de estructuras

AQUELLAS ACTIVIDADES QUE TIENEN UN (*) SE HACEN EN ESTE CUADERNO. LOS DEMÁS ACTIVIDADES SE HACEN EN LA LIBRETA. EN ESTE CASO, <u>SE EXIGE</u> QUE SE COPIEN LOS ENUNCIADOS.

- 1. ¿Qué tienen en común casi todas las estructuras?
- 2. ¿Por qué decimos que el esqueleto de un cuerpo humano es un ejemplo de estructura?
- 3. Enumera cinco estructuras diferentes y explica la utilidad de cada una de ellas.
- 4. Escribe el nombre de cinco estructuras naturales y de cinco artificiales.
- **5.** ¿Qué es la carga de una estructura? Nombra los dos tipos de cargas que hay e indica un ejemplo de cada.
- **6.** (*) Un puente es una estructura que soporta cargas **fijas** y/o **variables**. Indica el tipo de cargas que soporta los siguientes elementos del puente

a)	Farolas de un puente
b)	Vehículos que pasan el puente
c)	El viento que golpea al puente
d)	El asfalto de la carrete que está sobre el puente
e)	La Iluvia

7. (*) De la siguiente lista, señalas las estructuras que usarías para soportar pesos, salvar distancias o proteger objetos. Marca con una **X**. Cada estructura puede tener más de una opción.

	Soportar pesos	Salvar distancias	Proteger objetos		Soportar pesos	Salvar distancias	Proteger objetos
Patas de una mesa				Reloj			
Torre				Chasis del coche			
Pizarra				Estanterías			
Teleférico				Cartón de huevos			
Mesa				Columnas			
Silla				Puentes			
Caja de embalaje				Grúas			

Silia		Puenies		
Caja de embalaje		Grúas		
8. ¿Por qué es important	e que una estructura cor	serve su forma?		
9 (*) Tanto las	naturales cor	no las	tienen la	s siguientes
funciones: soportar carga	as,	partes delicadas	5,	la forma
de la estructura, ser	y ser	·		
10. Define elemento estructural. Nombra los mismos.				
11. Pon tres ejemplos de: a) pilares; b) vigas; c) tirantes.				
12. Una grúa de la construcción es una estructura de tipo triangular, móvil y colgante: (ver imagen de la grúa de la pag. 11)				
a) ¿Qué tipo de el	lementos la forman?			

b) Indica la función de cada uno de sus elementos en la grúa.

13. (*) ¿Para qué se utilizan los perfiles de ace	ero en una estructura? Nombra	dos tipos.
14. (*) La diferencia entre un esfuerzo de tr	acción y otro de	es que el
primero tiende a el element	o de la estructura, mientras que	e el segundo tiende a
comprimirlo.		
15. (*) a) ¿Qué es lo primero que se construye	e de un edificio? →	
b) Si un edificio no tuviese cimientos. ¿Que	é le podría pasar?	
16. ¿Qué es el hormigón? ¿Para qué se emple	ea?	
17. ¿Cómo se consigue hormigón armado? armado en lugar del hormigón simple?	¿Por qué se construyen los e	edificios de hormigón
18. Los albañiles refrescan con agua las pared	des encaladas con hormigón? ¿	Por qué?
19. ¿En qué se diferencia una viga de un pilar	?	
20. ¿Para qué sirven las vigas de una casa?		
21. ¿En qué tipo de edificios se emplean las c	erchas? ¿Por qué?	
22. Define y pon un ejemplo de elemento som	etido a	
a) compresión; b) tracción, c) flexión.		В
23. (*) Explica a que esfuerzo están sometido de la escalera plegable.	os cada uno de esos elemento	os A A A A A A A A A A A A A A A A A A A
A: Peldaño		
B: Riel (Son 4)		A H
C: Uniones entre rieles y peldaños		$H \mapsto \Gamma$
D: Zapatas		
24. (*) Relaciona con flechas cada elemento soporta:	estructural con el esfuerzo qu	е
Viga		
Tirante	Compresión	
Tensor	Flexión	
Columna y pilar	Flexión	

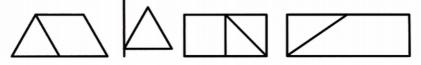
Tracción

Cimientos

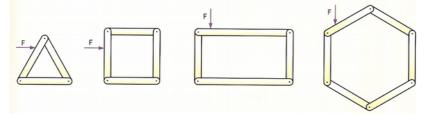
Cercha

25. (*) Decir que tipo de esfuerzo soporta o debe soportar cada uno de los elementos	(Opciones : compresión, torsión, flexión, cortadura, tracción)
• El cable que soporta la lámpara de un	Un tornillo insertándose en la madera
techo	
La patas de un taburete	• El asiento de una silla con alguien sentado en
• Un tobogán mientras un niño se desliza por él	ella
	Tapón de rosca de un bolígrafo
• Punta de un destornillador poniendo un tornillo	Soportes de la baca de un coche
	Unión que hay entre los postes y el larguero
• La tabla de una mesa	de una portería de fútbol
Llave girando dentro de una cerradura	Perchero colgado de una pared
	Un gancho colgado del techo
Cimientos de una casa	El pomo al abrir una puerta
• La cuerda que hay entre una lancha y un	Los cables de un puente colgante
esquiador acuático	• Las barras paralelas de gimnasia, con un
• El cuello de una botella con tapón de rosca	gimnasta colgado dando vueltas
	• La unión que existe entre una viga y un pilar
• Una viga	
• Un pilar	

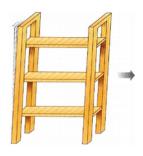
26. Indicar si las siguientes afirmaciones son verdaderas o falsas. Corregir aquella frase si es falsa **REESCRIBIENDO LA FRASE COMPLETAMENTE** EN TU CUADERNO. CAMBIA EL MÍNIMO NÚMERO DE PALABRAS.

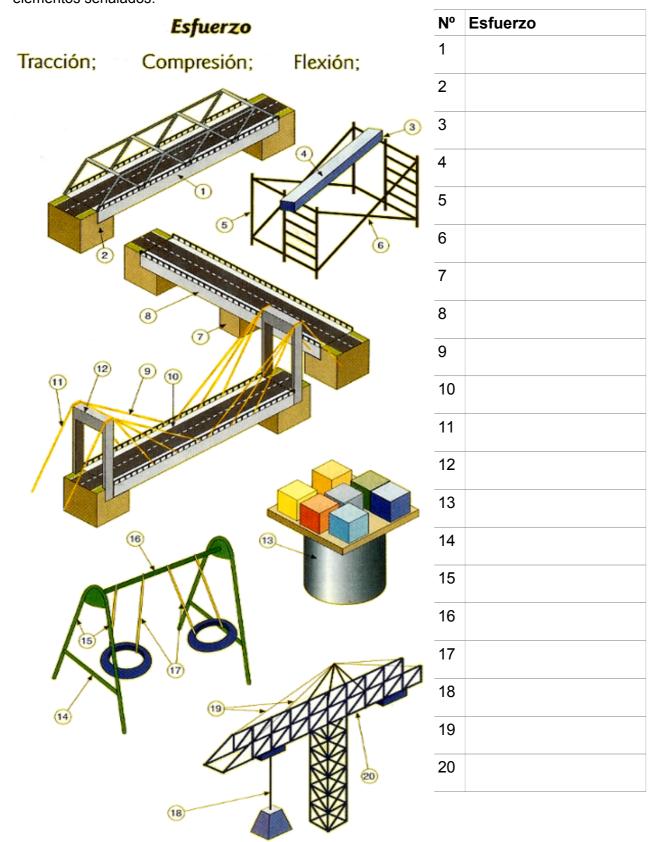

- a) Si en un cuerpo sus fibras se estiran como consecuencia de una fuerza externa, decimos que está sometido a compresión.
- b) Si en un cuerpo sus fibras se encogen como consecuencia de una fuerza externa, decimos que está sometido a una flexión.
- c) Cuando los pesos que actúan tienden a doblar la pieza, decimos que se produce una tracción.
- d) Cuando las cargas producen un retorcimiento de la pieza, decimos que se ha producido una flexión.
- e) Las vigas se colocan verticalmente en una estructura, mientras que las columnas horizontalmente.
- f) Las vigas son cables que se utilizan para reforzar las estructuras.
- g) Las estructuras son siempre rígidas.
- h) Los tirantes son cables que mejoran la resistencia y estabilidad de algunas estructuras.
- i) La carcasa de los electrodomésticos sirve para esconder sus piezas internas.
- j) Sólo los edificios y los puentes son estructuras resistentes debido a su tamaño.

27. (*) Relaciona los siguientes elementos con el tipo de esfuerzo al que están sometidos:


Elemento	Esfuerzo
Pata de la mesa	
Viga de una casa	
Cable de un puente	
Tabla de trampolín	
Muro de un sótano	
Azotea de una casa	
Riel de cortina	

28. (*) ¿Qué figura geométrica so pag. 11	e repite en una grúa de la construc	ción? Fíjate en la imagen de la
29 . (*) La	consiste en formar triángulos con	barras en una estructura para
que no	·	


- **30.** Piensa y responde:
 - a) ¿Se puede conseguir que una estructura sea resistente aunque el material con el que se ha construido no sea especialmente resistente? Nombra un ejemplo.
 - b) ¿Todas las estructuras se sostienen solas durante su construcción? Pon ejemplos para apoyar tu respuesta.
- **31.** (*) Añade barras a estás estructuras para formar triángulos y conseguir que sean indeformables, es decir, rígidas: (dibuja con un bolígrafo que no sea negro)


- 32. (*) a) ¿Qué ocurrirá si presionas en el vértice señalado por la flecha en las siguientes figuras?
 - b) Dibuja (negro no)sobre las propias figuras lo que añadirías para que no se deformaran.

- **33.** (*) a) ¿Por qué se mueve una estantería como la de la figura?:
 - b) ¿Qué harías para evitarlo?

34 (*) – En los dibujos siguientes determina el tipo de esfuerzo al que están sometidos los elementos señalados.

•	Elemento encargado de soportar y repartir en el suelo todo el peso de una
	estructura
•	Elemento estructural, de forma curvada , que salva el espacio entre dos
	pilares
•	Elemento estructural en forma de barra que se apoya verticalmente, cuya función es soportar el
	peso de otras partes de la estructura y de transmitirla a la cimentación
•	Pilares con sección más o menos circular
•	Barra, normalmente metálica, de distintas secciones que se emplean para conseguir estructuras
	más ligeras que soportan grandes pesos con poca cantidad de material
•	Elemento estructural con forma de barra que se coloca horizontalmente y se apoya sobre las
	columnas y pilares
•	Viga maciza que se apoya horizontalmente y que cierra los huecos tales como puertas y ventanas
•	Cables como los que sostienen la barra de gimnasia, o sujetan una tienda de camping

35 . (*) Indica a qué elemento estructural se refiere de estas definiciones: